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Abstract A greedy randomized adaptive search procedure (GRASP) is proposed for the
approximate solution of general mixed binary programming problems (MBP). Examples are
provided of practical applications that can be formulated as MBP requiring the solution of
a large number of problem instances. This justifies, from both a practical and a theoretical
perspective, the development of stopping rules aimed at controlling the number of iterations
in a GRASP. To this end, a bayesian framework is laid down, two different prior distributions
are proposed and stopping conditions are explicitly derived in analytical form. Numerical
evidence shows that the stopping rules lead to an optimal trade-off between accuracy and com-
putational effort, saving from unneeded iterations and still achieving good approximations.

Keywords GRASP · Bayesian stopping rules · Heuristics · Mixed binary programming

1 Introduction

Greedy randomized adaptive search procedures (GRASP) are metaheuristics that have been
successfully applied to a broad collection of difficult optimization problems, reviewed in (Feo
and Resende 1995; Festa and Resende 2002; Resende and Ribeiro 2003); see also (Betrò and
Vercellis 1986) for one of the earliest formulations of GRASP. In its basic version, a GRASP
is an iterative multi-start Monte Carlo algorithm in which randomization steps are introduced
as improvements over the myopic selection criteria of a typical greedy heuristic in order to
generate alternative feasible solutions. The best observed value in a sequence of independent
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runs is then retained as an approximation to the optimum value. Additional refinements have
been proposed to improve the outlined framework. For instance, at each iteration the random
solution achieved at the end of the generation phase can be improved through a local search
phase, in which a suitable neighborhood is systematically explored seeking for a better solu-
tion. Other strategies were aimed at incorporating some form of learning mechanism in the
memoryless structure of GRASP (Prais and Ribeiro 2000), or introduced cost perturbations
for problems where no obvious greedy algorithms are available (Canuto et al. 2001).

It appears that investigations on how large the number of different random solutions should
be were not addressed within the rich body of literature on GRASP, and to a large extent
the problem of determining the sample size for the Monte Carlo repeated trials was left
to empirical subjective assessment. Although somewhat unsatisfactory as a theoretical per-
spective, this pragmatic approach may seem appropriate for those optimization problems for
which each GRASP iteration is very fast, and a single instance has to be solved as a one-shot
problem. There are however situations that involve the solution of a very large number of
instances, up to thousands or more, therefore requiring a careful and regulated stopping rule
to balance accuracy and computational effort. For instance, in the construction of oblique
classification trees in learning theory (Orsenigo and Vercellis 2003, 2004a,b) a large col-
lection of mixed binary programming problems has to be solved, as sketched in Sect. 2. In
industrial applications, also considered in more details in Sect. 2, production planning prob-
lems with minimum lot size constraints can be formulated as mixed binary programming, and
have to be solved repeatedly for different product lines. Finally, similar requirements arise
when optimization is used in connection to simulation models, and each objective function
evaluation during the optimization process requires a long simulation run to be performed,
so that the user is interested in keeping low the number of iterations. Notice that the problem
of deriving stopping rules for multi-start algorithms was addressed for global optimization
by a number of authors (Betrò and Vercellis 1986; Boender and Rinnooy Kan 1987; Boender
et al. 1987; Betrò and Schoen 1987, 1992; Hart 1999).

In this paper we first describe families of optimization problems that arise in practical
applications and require the solution of a large number of instances. It will be seen that they
can be formulated as mixed binary programming problems. Then, a class of GRASP for their
approximate solution is proposed. In Sect. 3 we develop a bayesian framework for devising
sequential stopping rules for GRASP, discussing alternative assumptions concerning the prior
distribution, and showing how the posterior can be analytically calculated given the sample.
Finally, computational tests are presented in Sect. 4 to assess the potential advantages of the
proposed approach.

2 GRASP for mixed binary programming problems

In this section we propose a GRASP for solving the general mixed binary programming
problem (MBP), formulated as

min z(x, y) = c′x + h′y, (MBP)

s.t. Ax + Dy = b, (1)

x ≥ 0, 0 ≤ y ≤ 1, y integer,

where x ∈ R
n and y ∈ R

q are vectors of continuous and binary variables; c ∈ R
n,h ∈

R
q ,b ∈ R

m,A ∈ R
m×n,D ∈ R

m×q are vectors and matrices of parameters. Let (x∗, y∗)
and z∗ denote respectively the optimal solution and the optimum value associated to MBP,
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whenever they exist. A remarkable number of applied optimization problems can be naturally
expressed in the form MBP. In particular, we are interested here in situations that require
a large number of instances of MBP to be solved, because in similar cases the stopping
conditions developed in Sect. 3 would play a critical role. Therefore, a brief description of
two applied problems requiring the solution of large collections of MBP instances will be
provided, before developing a GRASP for MBP.

2.1 Example 1: MBP arising in learning theory

In the field of learning theory, some classification models based on discrete variants of sup-
port vector machines were recently proposed and formulated as MBP (Orsenigo and Vercellis
2003, 2004a,b). In a binary classification problem we are provided with a set of m points
defined in the n-dimensional space R

n and represented by a m × n matrix A. The mem-
bership of each point to one of the two classes, labeled as {+1} and {−1}, can be specified
by a given m × n diagonal matrix D with ones or minus ones along its main diagonal. To
discriminate points belonging to class {+1} from those labeled as {−1} a linear hyperplane
can be derived by minimizing a suitable measure of inaccuracy. Let w ∈ R

n and γ ∈ R

denote the coeffcients of the separating hyperplane to be determined. Elements of statistical
learning theory, described in the papers quoted above and in the references therein, lead back
the evaluation of (w, γ ) to the minimization of a weighted sum of three terms: the reciprocal
of the generalization capability of the discriminating model, its misclassification error and its
complexity. Let y be a vector of binary variables each taking the value one if and only if the
corresponding point is misclassified, and h be the vector of misclassification costs. Let also
s indicate a vector of binary variables each taking the value one if and only if the separating
hyperplane has a non-zero coefficient along the corresponding dimension i , that is if wi �= 0,
and k be the vector of penalty costs aimed at inducing sparse vectors w. Thus, the problem of
deriving an optimal separating hyperplane of low complexity can be formulated as a MBP

min z(w, γ,u, y, s) = β1e′u + β2h′y + β3k′s, (FDVM)

s.t. D(Aw − ey) ≥ e − Qy, (2)

−u ≤ w ≤ u, (3)

u ≤ Rs, (4)

u ≥ 0, y ∈ {0, 1}m, s ∈ {0, 1}n,

where e is a n-vector of ones; u ∈ R
n is a vector of bounding variables; Q and R are suffi-

ciently large constants; β1, β2, β3 are parameters to control the trade-off among the objective
function terms, representing respectively the reciprocal of the generalization capability, the
accuracy and the complexity of the separating function. Model FDVM can be used as a linear
perceptron or, alternatively, be framed within a recursive procedure for the generation of
oblique classification trees, to derive an optimal separating hyperplane at each node of the
tree. In this case, the need to solve a large number of instances of FDVM arises for multicate-
gory classification tasks, usually formulated as a sequence of binary classification problems.
In practice, to separate the points belonging to each node of the tree one has to determine
at least L separating hyperplanes, where L is the number of different classes. Moreover, the
parameters β1, β2, β3 have to be exhaustively tuned in order to generate the best classification
trees in terms of accuracy, generalization capability and complexity, and thus model FDVM
has to be solved for a large number of combinations of β1, β2, β3.
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2.2 Example 2: MBP arising in production planning

In the context of production planning, binary variables are often needed to express conditions
of minimum lot size on the continuous production quantities, or to model stepwise nonlinear
cost functions, as in the case of fixed production costs. To provide a generic description of this
class of problems, denote by x the vector of decision variables that represent the production
volumes for each product type, plant and period. Let y be the vector of binary variables, each
taking the value one if and only if the corresponding production quantity is greater than zero.
Let also c be a vector of unit production costs and h a vector of fixed costs. The production
planning problem can therefore be formulated as a MBP

min z(x, y) = c′x + h′y, (PPL)

s.t. Ax = b, (5)

x ≥ gy, x ≤ My, (6)

x ≥ 0, 0 ≤ y ≤ 1, y integer,

where g is a vector of minimum lot sizes, M is a big constant used to force the binary variables
and constraints (5) incorporate different type of logical and physical conditions, such as plants
and manpower capacity, balance on demand fulfillment, critical resources and components
availability. In practice, one has to solve a large number of MBP instances, since problem
PPL is usually decomposable in subproblems, by partitioning separate products, plants or
periods. Additionally, even when no natural separation is evident, mathematical decompo-
sition schemes can be applied to derive many smaller subproblems of the same MBP form,
such as in (Fumero and Vercellis 1996, 1997).

2.3 A GRASP for MBP

Given an optimization problem, let A be an algorithm designed to generate a feasible solution
whose objective function value z A is close to the optimum z∗. Algorithm A is said random-
ized if some of the steps it performs depend on the outcomes of a random number generation
process. Therefore, M repeated executions of A result in a sequence of independent real-
izations z A

i , i = 1, 2, . . . ,M, of the random variable (r.v.) Z A. The best value observed
z̄ = min1≤i≤M z A

i in a sequence of M independent runs is retained as an approximation to
the optimum value. Hence z̄ is a realization of the r.v. Z̄ . A GRASP metaheuristic is an iterative
algorithm that performs a construction phase to build a good feasible solution according to a
randomized variant of a greedy deterministic strategy. This means that for each step during
the construction phase, allowable moves are ranked according to some myopic measure of
attractiveness, and the move to be implemented is chosen randomly among a group of attrac-
tive ones, instead of picking the single highest ranked move as for the deterministic greedy
algorithm. The construction phase is usually followed by an improvement phase, in which a
local search is performed by iteratively searching a suitable neighborhood of the current best
solution, until no locally better solutions can be found. The pseudo-code in Fig. 1 provides
a general description of the GRASP we propose, while Fig. 2 sketches the local search pro-
cedure. The main novelty in our formulation lies in the stopping subprocedure controlling
the while-loop, that in previous studies on GRASP was implemented by simply reaching a
prefixed number of iterations, with the solely exception in (Betrò and Vercellis 1986).

In what follows we will detail the three main subprocedures contained in the GRASP
pseudo-code, in order to solve MBP. For both examples described above, as for many practical
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Fig. 1 Pseudo-code for the GRASP metaheuristic

Fig. 2 Pseudo-code for the local search metaheuristic

applications, it is straightforward to generate a feasible solution. We therefore assume that
a feasible solution (x̂, ŷ) to MBP is known, or otherwise its existence has been ruled out.
We denote by Ql = { j : ŷ j = l, j = 1, 2, . . . , q}, l ∈ {0, 1}, the two sets of indices of
binary variables assuming value 0 or 1 in the feasible solution. Let also (xA, yA) be the fea-
sible solution to MBP generated by the proposed GRASP, and z A = z(xA, yA) its objective
function value.

The construction phase is performed as follows. First the continuous relaxation of MBP
is solved, and let zL P = z(xL P , yL P ) be its optimal solution. Suppose that at least one
binary variable assumes a fractional value in the relaxed solution, since otherwise we have
reached also the optimal mixed binary solution and the procedure is stopped. In each sin-
gle step of the construction phase we try to force to 0 one of the fractional binary vari-
ables. As a measure of attractiveness for the fractional variables, we consider the potential
decrease in the objective function obtained by forcing a variable to zero, that is ρ j = h j yL P

j .

Let � = { j : 0 < yL P
j < 1, j = 1, 2, . . . , q} be the ordered set of fractional binary

variables ranked by nonincreasing weights ρ j . Now, the random selection of a variable
yk in � can be performed in several ways, and we propose two alternatives. The first is
based on the concept of restricted candidate list (RCL), often used in other GRASP stud-
ies: a threshold parameter α ∈ (0, 1) is assigned, and only those variables in � such that
ρ j ∈ [ρmax −α(ρmax −ρmin), ρmax] are inserted into the RCL, where ρmin, ρmax are respec-
tively the minimum and the maximum values of ρ j for j ∈ �. Then, the variable is randomly
selected from the RCL according to a uniform distribution. The second alternative does not
consider a RCL but instead extracts the variable yk according to a truncated geometric distri-
bution over�. More specifically, generate a value s according to the probability mass function
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Pr{S = s} = ϕ(1 − ϕ)s−1

θ
, s = 1, 2, . . . , |�|, (7)

θ = 1 − (1 − ϕ)|�|, (8)

ϕ = 1 −
∑

j∈� ρ j

|�|ρmax , (9)

and take the sth variable in the ordered set�. By this way the variables in� have decreasing
probabilities of being chosen. The choice of the parameter ϕ is self-explanatory: the more
the maximum weight exceeds the average weight, the closer ϕ is to 1, so that the element of
maximum weight is more likely to be selected.

After random selection of the fractional binary variable yk , its value is forced to zero, and
the modified continuous relaxation is solved again. There may arise two cases: if the relaxa-
tion has a feasible solution, then the step is repeated with the new relaxed solution. Otherwise,
if no feasible solution exists, variable yk is forced to one, and the continuous relaxation is
solved again. If the variable yk belongs to the set Q1 then it is forced permanently to the value
one. The entire step is still repeated. It is easy to verify that the construction phase will end
up with a feasible solution z A = z(xA, yA)which is tentatively improved by means of a local
search phase. To fully describe this latter, we just have to define the concept of neighborhood
of a feasible solution (x, y) to MBP. A solution (x′, y′) belongs to a neighbor of (x, y) if it is
feasible and if it can be obtained by exchanging the value of two binary variables in y, say
them yr , ys , as follows

yr = 0, y′
r = 1, ys = 1, y′

s = 0. (10)

3 A bayesian stopping rule for GRASP

As we have seen in Sect. 2, a GRASP requires an appropriate stopping rule to be assigned
for the repeated independent executions of the algorithm, determining how large the value
of M should be. In practice, this issue has been disregarded in most studies, assuming a
blanket rule that fixes in advance a large value of M . However, as noticed for the aforemen-
tioned examples, there are situations where devising an adaptive stopping rule can be highly
beneficial to balance the computational effort and the quality of the approximate solution.

Let zL and zU be known lower and upper bounds to the optimum z∗ of MBP. For instance,
zL can be obtained by solving the continuous relaxation of MBP, whereas zU can be the
value associated to any feasible solution. To simplify the derivation of the stopping rule, we
make the reasonable assumption that the user can be satisfied by an approximate ψ-optimal
solution having a relative error less than a specified tolerance 0 ≤ ψ ≤ 1, that is

z̄ − z∗

zU − zL
≤ ψ. (11)

Now apply the following transformation to the objective function of MBP: scale down each
cost coefficient by the factor π = (zU − zL)/�zU − zL� and subtract the constant (zL − 1).
Moreover, round up the solution value generated by A to its integer ceiling, so that the trans-
formed r.v. Z̄T ranges in the set {1, 2, . . . , r}, where r = �zU − zL� + 1 and subscript T
is used to denote transformed values. It can be easily verified that a ψ-optimal solution z̄T

after the transformation corresponds to a ψ-optimal solution z̄ for the original MBP. Indeed,
if the inequality (z̄T − z∗

T )/(r − 1) < ψ holds, then
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z̄ − z∗

zU − zL
≤ π

z̄T − z∗
T

zU − zL
= z̄T − z∗

T

�zU − zL� = z̄T − z∗
T

r − 1
< ψ. (12)

In the following, subscript T will be dropped for transformed values. Denote by pz and
F(z), respectively, the probability mass function (p.m.f.) and the cumulative distribution
function (c.d.f.) of the r.v. Z̄ . It seems reasonable to stop the execution whenever the proba-
bility of improving the current best solution value z̄, achieved during the first M independent
executions of algorithm A, is below an assigned level of confidence ξ

F(z̄) < ξ, (13)

that is when z̄ < zξ , where zξ is the ξ -order quantile of the distribution F(z). In order to test
the validity of the stopping condition (13) a bayesian two decisions framework is developed,
by letting d0 be the action “accept hypothesis (13)” and d1 the opposite action “reject hypoth-
esis (13)”. The sampling information is represented by a vector t = (t1, t2, . . . , tr )whose i th
component equals the number of elements of the sequence {z A

j }, j = 1, 2, . . . ,M , falling

into the i th value of the range for the r.v. Z̄ , that is ti = |{ j : z A
j = i}|. The whole sample

space is then composed by those r -vectors such that ti ≥ 0, i = 1, 2, . . . , r , and
∑r

i=1 ti =
M . Since each run of the algorithm A is independent, the joint distribution of the r.v.’s
ti , i = 1, 2, . . . , r , is multinomial

Pr{t1 = n1, t2 = n2, . . . , tr = nr } = M !
n1!n2! . . . nr !

r∏

i=1

pni
i . (14)

The space of parameters, denoted as �, corresponds to all p.m.f.’s defined over the set
i = 1, 2, . . . , r , that is to points in the (r − 1)-simplex

Sr−1 =
{

p = (p1, p2, . . . , pr ) : pi ≥ 0,
r∑

i=1

pi = 1

}

. (15)

The choice of a suitable loss function should balance a trade-off between the quality of the
approximation of the current z̄ to the optimum z∗ and the computational effort involved in
performing further runs of A. The loss function considered here is

L(p, d0) = w0 I(−∞,z̄](zξ ),
L(p, d1) = w1 I(z̄,+∞)(zξ ), (16)

where IE (·) is the indicator function of the set E andw0, w1 are nonnegative real parameters,
which can be interpreted as follows:w0 is the penalty cost incurred when retaining the current
best value z̄ though a better approximation to z∗ could have been attained with a probability
greater than the confidence threshold ξ , whereas w1 is the cost involved in performing a
further iteration after the stopping condition being met.

The bayesian framework requires a prior probability measure τ(p) be assigned over the
space of parameters �. A candidate prior τ(p) should ideally satisfy two properties: first, it
should be general enough so that its support in� includes p.m.f.’s of different forms; second,
although not strictly necessary, it is convenient that the posterior τ(p|t) given the sample t
be manageable analytically, in order to reduce the computational effort.
The optimal bayesian decision is the one that minimizes the expected risk, defined as

R(τ, dl) =
∫

�

L(p, dl)dτ(p|t), l = 0, 1. (17)
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In particular, the expected risk corresponding to the loss functions (16) is given by

R(τ, d0) =
∫

�

w0 I(−∞,z̄](zξ )dτ(p|t) = w0 Pr {zξ ≤ z̄|t} = w0 Pr {F(z̄) ≥ ξ |t}, (18)

R(τ, d1) =
∫

�

w1 I(z̄,+∞)(zξ )dτ(p|t) = w1Pr{z̄ < zξ |t} = w1Pr{F(z̄) < ξ |t}. (19)

Thus, the optimal bayesian decision is d0 if the inequality

w0 Pr {F(z̄) ≥ ξ |t} < w1 Pr {F(z̄) < ξ |t} (20)

holds, and d1 otherwise. It follows that the optimal decision is d0 if

Pr {F(z̄) < ξ |t} > w0

w0 + w1
(21)

holds, and d1 if the converse is true. Consequently, in order to derive the optimal bayesian
rule, the main efforts are directed to explicitly calculating the conditional probability in (21).
In the sequel we will propose two different models of prior distribution τ(p) over�, deriving
in both cases explicit optimal bayesian rules.

3.1 Dirichlet prior

The most natural choice for the prior τ(p) is the Dirichlet distribution over the (r − 1)-
dimensional simplex Sr−1, known as the conjugate prior for the parameters of a multinomial
distribution; for an extensive treatment see (Wilks 1962). The r.v.’s (p1, p2, . . . , pr ) are
said to follow a Dirichlet distribution over Sr−1 if the joint (r − 1)-dimensional density of
(p1, p2, . . . , pr−1) is given by

f p1,p2,...,pr−1(p1, p2, . . . , pr−1) = 
(∑r

i=1 βi
)

∏r
i=1 (βi )

(
r−1∏

i=1

pβi −1
i

) (

1 −
r−1∑

i=1

pi

)βr −1

, (22)

where (α) is the gamma function
∫ ∞

0 λα−1e−λdλ and βi , i = 1, 2, . . . , r , are positive real
parameters, linked to the prior expected values of the pi by the relationships

E[pi ] = βi
∑r

i=1 βi
, i = 1, 2, . . . , r. (23)

Their values can be assigned on the basis of prior guesses about pi , i = 1, 2, . . . , r . If no hint
is available, one can set βi = β, i = 1, 2, . . . , r , for some constant β, deriving a symmetric
prior τ(p) over Sr−1. The particular choice β = 1 leads to the uniform distribution over
Sr−1. As an alternative, one may consider the maximum entropy prior, with β = 0.

To describe in explicit form the stopping rule we need to evaluate the probability in (13), as
accomplished in theorem 3.1 below. The two following properties of the Dirichlet distribution
are needed:

Proposition 3.1 If the r.v.’s (p1, p2, . . . , pr ) have prior Dirichlet distribution of parameters
(β1, β2, . . . , βr ), then their posterior distribution, given the sample t = (t1, t2, . . . , tr ), is
Dirichlet of parameters (β1 + t1, β2 + t2, . . . , βr + tr ).

Proposition 3.2 If the r.v.’s (p1, p2, . . . , pr ) have a Dirichlet distribution of parameters
(β1, β2, . . . , βr ), then the distribution of the r.v.

∑z̄
i=1 pi is beta of parameters

∑z̄
i=1 βi

and
∑r

i=z̄+1 βi .
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Let B(µ, ν) = B1(µ, ν) be the beta function, and Iu(·, ·) the incomplete beta function

Iu(µ, ν) = Bu(µ, ν)

B(µ, ν)
= 1

B(µ, ν)

u∫

0

λµ−1(1 − λ)ν−1dλ. (24)

We are now in a position to prove the

Theorem 3.1 If the Dirichlet distribution over Sr−1 is assumed, then

Pr{F(z̄) < ξ |t} = 1

B(µ, ν)

ξ∫

0

λµ−1(1 − λ)ν−1dλ = Iξ (µ, ν), (25)

where µ = ∑z̄
i=1(βi + ti ) and ν = ∑r

i=z̄+1(βi + ti ).

Proof Relation (25) follows from

Pr {F(z̄) < ξ |t} = Pr

{
z̄∑

i=1

pi < ξ |t
}

, (26)

noticing that Propositions 3.1 and 3.2 together imply that the r.v.
∑z̄

i=1 pi , given the sample
t , is beta distributed of parameters (µ, ν). 
�

Thus, for the Dirichlet distribution the stopping rule takes on a manageable form, as
depicted by expression (25), and both requirements expressed above about the prior τ(p) are
met. It can be noticed that ti = 0 for i = 1, 2, . . . , z̄, and that

∑r
i=z̄+1 ti = M : this implies

that the parameters µ, ν in (25) can actually be expressed as

µ =
z̄∑

i=1

βi , ν =
r∑

i=z̄+1

βi + M. (27)

Consequently, the posterior distribution τ(p|t) gains information from the sample only
through the total number M of observations falling into the set {z̄ + 1, z̄ + 2, . . . , r}, but not
through the specific values assumed by the observations within this set. This property makes
the posterior distribution so easy to handle for the Dirichlet prior. However, the posterior is
rather insensitive to the sampled values, and this is not a desirable feature of τ(p|t). Thus, in
addition to the Dirichlet distribution, we propose a different prior which seems more suited to
model the distribution of the sampled z A

j , even at the expense of a narrower support over �.

3.2 Right-binomial prior

The second model of prior distribution τ(p) we introduce, referred to as right-binomial
prior, is described by assigning an explicit formula for the unknown probabilities pi , i =
1, 2, . . . , r :

pi =
(

r − K
r − i

)

Ur−i (1 − U )i−K , (28)

(the coefficient

(
α

β

)

being zero whenever α < β) which involves two independent r.v.’s K

and U , satisfying the following assumptions:
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• K is a discrete r.v. taking its values in the set {1, 2, . . . , r} with a binomial p.m.f.

fK (k) =
(

r − 1
k − 1

)

δk−1(1 − δ)r−k, k = 1, 2, . . . , r, (29)

where 0 < δ < 1 is a given parameter;
• U is a continuous r.v. in the interval (0, 1) with beta density

fU (u) = 1

B(a, b)
ua−1(1 − u)b−1, (30)

where a, b > 0 are given parameters.

Some remarks may guide a suitable choice of the parameters δ, a and b. The first (K − 1)
components of the p.m.f. pi are all equal to zero, while a binomial-like shape is displayed
over the remaining right part of the set {1, 2, . . . , r}. As a consequence, the r.v. K has an
immediate interpretation: it represents the unknown optimum value. Moreover, it can be
easily seen that

E[K ] = (r − 1)δ + 1. (31)

Thus, the parameter δ is linked to the prior guess about z∗, and relation (31) highlights the
choice of its value. The lack of any belief about the value z∗ can bring a pessimistic strategy
into effect, by letting E[K ] = 1. The values of the parameters a and b can be assessed by
means of the prior guess about mean and variance of the r.v. Z A. In fact, both E[W ] and
V ar [W ] can be easily evaluated and fixed according to the prior information; again, a pessi-
mistic strategy can be pursued. This leads to a system of two equations in the two unknowns
a and b.

We show how E[Z A] can be obtained; in a similar way the analogous explicit formula for
the variance can be derived.

Theorem 3.2 For the right binomial prior

E[Z A] = r − a

a + b
[r − 1 − (r − 1)δ]. (32)

Proof We have

E[Z A] =
r∑

k=1

f (k)

1∫

0

f (u)E[Z̄ |k, u]du

=
r∑

k=1

f (k)

1∫

0

f (u)

[
r−k∑

w=0

(
r − k
w

)

uw(1 − u)r−k−w(r − w)

]

du (33)

=
r−1∑

k=0

(
r − 1

k

)

δk(1 − δ)r−1−k
[

r − (r − k − 1)
a

a + b

]

= r − a

a + b
[r − 1 − (r − 1)δ],

and this proves the theorem. 
�
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The following result expresses in explicit form the stopping rule for the right-binomial
prior:

Theorem 3.3 For the right-binomial prior

Pr{F(z̄) < ξ |t}

=

∑z̄+1
k=1

(
r −1
k−1

)

δk−1(1−δ)r−k

[
∏r

i=1

(
r −k
r −i

)ti
]

Bw(Mr −�+a,�−Mk+b)

∑r
k=1

(
r −1
k−1

)

δk−1(1−δ)r−k

[
∏r

i=1

(
r −k
r −1

)ti
]

B(Mr −�+a,�−Mk+b)

,

(34)

where w is the unique value satisfying the relation Iw(r − z̄, z̄ − k + 1) = ξ for r − z̄ > 0,
z̄ − k + 1 > 0, while w = 1 for r − z̄ = 0 or z̄ − k + 1 = 0; also, � = ∑r

i=1 ti i , and it is
assumed that 0! = 1, 00 = 1, 0i = 0 for i > 0.

Proof Conditioning on K and observing that f (k|t) = 0 for k > z̄ + 1, one has

Pr{F(z̄) < ξ |t} =
z̄+1∑

k=1

f (k|t)Pr

{
r−k∑

i=r−z̄

(
r − k

i

)

Ui (1 − U )r−k−i < ξ |t, k

}

=
z̄∑

k=1

f (k|t)Pr{IU (r − z̄, z̄ − k + 1) < ξ |t, k} + f (z̄ + 1|t).

(35)

Iv(r − z̄, z̄ − k + 1) is a function of v monotonically increasing over the interval (0, 1), and it
assumes all values of the interval (0, 1), so that the equation Iv(r − z̄, z̄ − k + 1) = ξ admits
a unique solution w. As remarked, we take w = 1 when one of the arguments equals zero.
Then (35) becomes

z̄+1∑

k=1

f (k|t)Pr{U<w|t, k} =
z̄+1∑

k=1

f (k, t)

f (t)

w∫

0

f (t |k, u) f (k, u)

f (k, t)
du. (36)

Notice that f (t |k, u) is a multinomial p.m.f.

f (t |k, u) = M !
∏r

i=1 ti !
r∏

i=1

[(
r − k
r − i

)ti
uti (r−i)(1 − u)ti (i−k)

]

. (37)

The value of f (t) can be computed by conditioning on K and U

f (t) =
r∑

k=1

f (k)

1∫

0

f (u) f (t |k, u)du = M !
∏r

i=1 ti !
r∑

k=1

(
r − 1
k − 1

)

δk−1(1 − δ)r−k

×
[

r∏

i=1

(
r − k
r − i

)ti
]

B(Mr −�+ a,�− Mk + b)

B(a, b)
.

(38)

Putting (37) and (38) into (36) leads to (34). 
�
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4 Computational tests

The proposed stopping rules have been implemented and tested using the two versions of
GRASP described in Sect. 2 for solving instances of model FDVM. For the computational
experiences, four difficult and time-consuming problems were considered, concerning the
classification of the following benchmark datasets, publicly available from the UCI Ma-
chine Learning Repository (Hettich et al. 1998): “DNA”, “led display”(Led), “satellite im-
age” (Satellite) and “vehicle silhouette” (Vehicle). For these datasets, classification trees
FDSDTSLP, based on model FDVM and solved with a sequential algorithm (Orsenigo and
Vercellis 2003), exhibits unsatisfactory performances in terms of accuracy and computational
effort. We then used the two alternative versions of GRASP to solve FDVM at each node
of the tree, in place of the sequential algorithm. To verify the effectiveness of the bayesian
framework, we compared the classification trees generated by the proposed rules with those
obtained by two simple stopping criteria, each performing a fixed number of executions of
GRASP. These blanket rules, denoted as Bl1 and Bl2 in the computational tests, were forced
to implement respectively 50 and 500 iterations of the randomized procedure (Table 1).

To assess the performance of the stopping rules, we evaluated the accuracy and the comput-
ing time required when the classification trees were generated by means of eight alternative
algorithms. Four of these methods were derived by combining the blanket stopping rules with
the way of selecting the fractional variable described in Sect. 2, according to the restricted
list of candidates (RLC) or to a geometric selection (GEO); the remaining four algorithms
were obtained by applying the bayesian decision for each type of randomization and for each
form of the prior distribution; BsD stands for the Dirichlet distribution, whereas BsR denotes
the right-binomial prior.

The computational experiences point out a number of interesting issues. The compari-
son with the methods based on the simple criteria shows that a significant computational
saving can be achieved with the proposed stopping rule, whether the Dirichlet prior or the
right-binomial prior is assumed as the prior distribution, without significantly compromis-
ing the overall accuracy. Actually, the correctness of the classification is comparable to the
best values obtained by the most time-consuming blanket rule. Notice also that the bayesian
stopping rule permits to achieve high accuracies either when the fractional variable is ran-
domly selected from the restricted candidate list or it is chosen according to the truncated
geometric distribution. Furthermore, there is a mild dependence from the specific form of
the prior distribution adopted, with a slight preference for the right-binomial prior. As might
be expected, for the blanket rules the accuracy of the classification is preserved only by the
criteria involving the largest number of iterations.

Table 1 Computational tests on benchmark datasets: accuracy results (%) and computing times (mm:ss)

Dataset Method

Bl1 Bl2 BsD BsR
FDSDTSLP RLC GEO RLC GEO RLC GEO RLC GEO

DNA 85.2 86.4 87.1 92.1 92.1 89.4 88.6 91.5 90.5
3 classes 02:12 04:36 04:39 46:13 47:16 14:26 14:27 14:25 14:24
Led 63.4 65.6 64.9 71.8 70.2 69.2 69.8 71.3 71
10 classes 04:48 09:10 09:12 93:22 93:26 35:04 33:06 35:06 35:08
Satellite 75.3 73.2 73.7 82.2 81.8 79.3 79.7 80.9 81.8
6 classes 03:24 05:30 05:31 55:48 55:50 17:11 17:14 17:10 17:09
Vehicle 76.6 77 77.4 83.4 83.6 81.2 81.5 82.1 81.3
4 classes 02:30 04:27 04:29 45:07 45:10 14:13 14:15 14:12 14:14
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